國一數學(下) ─ 比與比例式

標籤:

國中數學第二冊 第三章 比與比例式
3-1 比與比例式


國一數學(下) ─ 比與比例式



播放目錄:《1》比與比例式《2》比與比值《3》比例式《4》比例式的性質(1) - 擴分與約分《5》例題 (比的擴分、約分)《6》比例式的性質(2) - 外項乘積 = 內項乘積《7》比例式的性質(3) - 假設 a = cm, b = dm《8》例題 (比例式的技巧練習)《9》重點整理

a和b兩個數的比,記為a:b。而a/b稱為這兩個數的比值。b在分母,所以b≠0。

比例式的定義:若兩個比a:b和c:d的比值相同,就是a/b=c/d。在數學上可以記成a:b=c:d,這種等式稱為比例式。

比例式的性質(1):擴分a:b=am:bm,m≠0。約分a:b=a/m:b/m,比的擴分與約分,簡單的說,就是比例式中的a與b,因為等號的關係,所以,a和b兩者同時乘或除以一個共同的數,其結果是不變的。

比例式的性質(2):若a:b=c:d,則ad=bc,也就是外項乘積=內項乘積。這道理也是因為等號的緣故,所以,兩分數之間既然是相等的,那交叉相乘的結果,其結果還是不變的。如:1/2=2/4,1x4=2x2是相同的道理。

國一數學(下) ─ 二元一次方程式的圖形

標籤:

國中數學第二冊 第二章 直角坐標與二元一次方程式的圖形
2-2 二元一次方程式的圖形


國一數學(下) ─ 二元一次方程式的圖形



播放目錄:《1》二元一次方程式的圖形《2》方程式的解與圖形的關係《3》畫方程式的圖形 (兩點決定一直線)《4》x = c與 y = d 的圖形《5》例題 (方程式的解與坐標上點的關係)《6》直線平移的問題《7》直線平移的規則探討《8》聯立方程式的解與直線的交點《9》重點整理

二元一次方程式的解,通常可以用數對(a,b)來表示。而這樣的數對,在坐標平面上可以用來描述一個點的坐標。

二元一次方程式的解,所形成的圖形都是一條直線。當然,這條直線上的任何一個點,也都是方程式的解。

方程式圖形的平移。先找到新的方程式的兩個點,再透過y=ax+b求出a,b。

方程式圖形的移動。將方程式y=ax+b的圖形向上移動d點之後,方程式就變為y=ax+b+d,也就是x的值不會改變,而y的值,就需要加上d。相對的,若方程式圖形平移向下的話,那方程式將變為y=ax+b-d。

方程式y=ax+b的圖形向左或右平移時,就可以先將方程式寫成x=y-b/a。例如:若將方程式y=ax+b的圖形向右移動d點之後,那方程式就變為x=y-b/a +d。相對的,若方程式圖形平移向左的話,那方程式將變為x=y-b/a -d。

聯立方程式的解與圖形的關係。當解出聯立方程式為一組解時,那表示兩條直線有一個交點,此交點就等於那一組解。若解出聯立方程式為無解之時,那表示這兩條直線是互相平行的。又若是解出聯立方程式為無限多組解時,那表示這兩條直線是重疊在一起的。

直線方程式的分類:直線方程式 ax+by=c
  • 當a≠0且b≠0時,則為一條斜直線。
  • 當b=0時,為一條垂直於x軸的直線,或是平行於y軸的直線。
  • 當a=0時,為一條垂直於y軸的直線,或是平行於x軸的直線。



  • 二元一次方程式的圖形



    播放目錄:《1》二元一次方程式的解與圖形《2》二元一次方程式的圖形畫法《3》利用Geogebra說明直線方程式的類型與性質《4》利用Geogebra說明平行x軸與平行y軸之直線方程式性質《5》已知直線上兩點求直線方程式《6》已知平行X軸的直線上一點求直線方程式《7》已知平行Y軸的直線上一點求直線方程式《8》二元一次聯立方程式的幾何意義


    二元一次方程式的圖形 ─ 題型解析



    播放目錄:《1》二元一次方程式圖形《2》例題1. (二元一次方程式的解)《3》例題2. (直線上的點)《4》例題3. (兩點決定一直線)《5》例題4. (已知兩點求直線)《6》例題5. (三點共線)《7》例題6. (直線方程式的係數)《8》例題7. (求平行線方程式)《9》例題8. (直線平移)《10》例題9. ( 直線與象限 )《11》例題10. (直線方程式應用)《12》例題11. (兩直線的交點)《13》例題12. (三線交於一點)《14》例題13. (直線交於一點)《15》例題14. (直線重合)

    例題2:方程式4x-3y=12的圖形與x軸的交點為P,與y軸的交點為Q,求(1)P與Q點的坐標(2)O為原點,試求三角形POQ的面積。

    例題7:設一直線通過(-3,2),且與直線2x-y=4平行,求此直線方程式。

    例題13:平面上兩直線ax-3y=4與3x+2y=3有唯一的一個交點,求a的範圍。




    參考資料:www.PowerCam.cc
         www.Liveism.com  利用Geogebra說明直線方程式


    國一數學(下) ─ 直角坐標

    標籤:

    國中數學第二冊 第二章 直角坐標與二元一次方程式的圖形
    2-1 直角坐標


    國一數學(下) ─ 直角坐標



    播放目錄:《1》直角坐標平面大綱《2》直角坐標平面《3》點的坐標《4》點坐標在平面上的位置《5》例題 (點的相對位置)《6》認識象限《7》例題 (象限)《8》點到坐標軸的距離《9》例題 (點到坐標軸的距離)《10》重點整理

    點的座標表示法。任何一點P的位置,都可以用數對P(a,b)來表示。稱為P點的坐標。

    點的坐標:求點P(a,b)的坐標,(1)先從P點,畫上垂直於x軸的垂直線,而相交於x軸上距離的點,就是a。(2)再從P點,畫上水平線,而相交於y軸上的點,就是b。所以,若點是P(a,0)的話,那麼點P會坐落在x軸上。而,若點是P(0,b)的話,那麼點P會坐落在y軸上。

    x與y軸上的任何一個點,它都不屬於任何一個象限。

    點到坐標軸的距離。例如:點P(a,b)到x軸的距離就是│b│(絕對值b)。到y軸的距離就是│a│(絕對值a)。


    直角坐標平面



    播放目錄:《1》直角坐標系的介紹《2》坐標平面上的點《3》坐標平面上的象限

    直角坐標系(Cartesian Coordinate System)的定義:由兩條互相垂直、0點重合的數線所構成。


    直角坐標平面 ─ 題型解析



    播放目錄:《1》直角坐標平面 - 題型解析《2》例題1. (坐標平面上的點)《3》例題2. (判斷象限)《4》例題3. (判斷象限)《5》例題4. (點到坐標軸的距離)《6》例題5. (點到坐標軸的距離)《7》例題6. (長方形的面積及周長)《8》例題7. (填補法求面積)《9》例題8. (坐標平移)《10》例題9. (坐標平移)《11》例題10. (坐標平移應用)《12》例題11. (平移應用)《13》例題12. (線段中點坐標)《14》例題13. (中點坐標應用)

    例題7:坐標平面上A(1,2),B(-3,-1),C(2,-2),求三角形ABC的面積?

    例題9:直角坐標平面上,有A(a+2,2b+4)、B(3b-1,3a+2)兩點,若A點向左平移5個單位,再往下平移3個單位,會與B點重合,求a、b之值各為多少?




    參考資料:www.PowerCam.cc
         www.Liveism.com


     
    ;